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Abstract

Stan is a probabilistic programming language for specifying statistical models. A Stan
program imperatively defines a log probability function over parameters conditioned on
specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference
for continuous-variable models through Markov chain Monte Carlo methods such as the
No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized
maximum likelihood estimates are calculated using optimization methods such as the
limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm.

Stan is also a platform for computing log densities and their gradients and Hessians,
which can be used in alternative algorithms such as variational Bayes, expectation propa-
gation, and marginal inference using approximate integration. To this end, Stan is set up
so that the densities, gradients, and Hessians, along with intermediate quantities of the
algorithm such as acceptance probabilities, are easily accessible.

Stan can be called from the command line using the cmdstan package, through R using
the rstan package, and through Python using the pystan package. All three interfaces sup-
port sampling and optimization-based inference with diagnostics and posterior analysis.
rstan and pystan also provide access to log probabilities, gradients, Hessians, parameter
transforms, and specialized plotting.
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1. Introduction
The goal of the Stan project is to provide a flexible probabilistic programming language for
statistical modeling along with a suite of inference tools for fitting models that are robust,
scalable, and efficient.
Stan differs from BUGS (Lunn, Thomas, Best, and Spiegelhalter 2000; Lunn, Spiegelhal-
ter, Thomas, and Best 2009; Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012) and
JAGS (Plummer 2003) in two primary ways. First, Stan is based on a new imperative proba-
bilistic programming language that is more flexible and expressive than the declarative graph-
ical modeling languages underlying BUGS or JAGS, in ways such as declaring variables with
types and supporting local variables and conditional statements. Second, Stan’s Markov
chain Monte Carlo (MCMC) techniques are based on Hamiltonian Monte Carlo (HMC), a
more efficient and robust sampler than Gibbs sampling or Metropolis-Hastings for models
with complex posteriors.1

Stan has the interfaces cmdstan for the command line shell, pystan for Python (Van Rossum
et al. 2016), and rstan for R (R Core Team 2016). Stan also provides packages wrapping
cmdstan, including MatlabStan for MATLAB, Stan.jl for Julia, StataStan for Stata, and Math-
ematicaStan for Mathematica. These interfaces run on Windows, Mac OS X, and Linux, and
are open-source licensed.
The next section provides an overview of how Stan works by way of an extended example, after
which the details of Stan’s programming language and inference mechanisms are provided.

2. Core functionality
This section describes the use of Stan from the command line for estimating a Bayesian model
using both MCMC sampling for full Bayesian inference and optimization to provide a point
estimate at the posterior mode.

2.1. Program for estimating a Bernoulli parameter

Consider estimating the chance of success parameter for a Bernoulli distribution based on a
sequence of observed binary outcomes. Figure 1 provides an implementation of such a model
in Stan. The model treats the observed binary data, y[1],...,y[N], as independent and
identically distributed, with success probability theta. The vectorized likelihood statement
can also be coded using a loop as in BUGS, although it will run more slowly than the vectorized
form:

for (n in 1:N)
y[n] ~ bernoulli(theta);

A beta(1, 1) (i.e., uniform) prior is placed on theta, although there is no special behavior
for conjugate priors in Stan. The prior could be dropped from the model altogether because
parameters start with uniform distributions on their support, here constrained to be between
0 and 1 in the parameter declaration for theta.

1Neal (2011) analyzes the scaling benefit of HMC with dimensionality. Hoffman and Gelman (2014) provide
practical comparisons of Stan’s adaptive HMC algorithm with Gibbs, Metropolis, and standard HMC samplers.
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data {
int<lower=0> N; // N >= 0
int<lower=0, upper=1> y[N]; // y[n] in { 0, 1 }

}
parameters {

real<lower=0, upper=1> theta; // theta in [0, 1]
}
model {

theta ~ beta(1, 1); // prior
y ~ bernoulli(theta); // likelihood

}

Figure 1: Stan program to estimate chance of success in the independent Bernoulli model.

2.2. Data format

Data for running Stan from the command line can be included in the R dump format. All of
the variables declared in the data block of the Stan program must be defined in the data file.
For example, 10 observations for the model in Figure 1 can be encoded as:

N <- 10
y <- c(0, 1, 0, 0, 0, 0, 0, 0, 0, 1)

This defines the contents of two variables, an integer N and a 10-element integer array y. The
variable N is declared in the data block of the program as being an integer greater than or
equal to zero; the variable y is declared as an integer array of size N with entries between 0
and 1 inclusive.
In rstan and pystan, data can also be passed directly through memory without the need to
read or write to a file.

2.3. Compiling the model

After a C++ compiler and make are installed,2 the Bernoulli model in Figure 1 can be
translated to C++ and compiled with a single command. First, the directory must be changed
to $stan, which we use as a shorthand for the directory in which Stan was unpacked.3

> cd $stan
> make replication/bernoulli

2Appropriate versions are built into Linux. The RTools package suffices for Windows; it is available from
https://CRAN.R-project.org/bin/windows/Rtools/. The Xcode package contains everything needed for the
Mac; see https://developer.apple.com/xcode/ for more information.

3Before the first model is built, make must build the model translator (target bin/stanc) and poste-
rior summary tool (target bin/stansummary), along with an optimized version of the C++ library (target
bin/libstan.a). Please be patient and consider make option -j2 or -j4 (or higher) to run in the specified
number of processes if two or four (or more) computational cores are available.

https://CRAN.R-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/
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This produces an executable file bernoulli (bernoulli.exe on Windows) on the same path
as the model. Forward slashes can be used with make on Windows.

2.4. Running the sampler

Command to sample from the model

The executable can be run with default options by specifying a path to the data file. The
first command in the following example changes the current directory to that containing the
model, which is where the data resides and where the executable is built. From there, the
path to the data is just the file name bernoulli.data.R.

> cd $stan/replication/bernoulli
> ./bernoulli sample data file=bernoulli.data.R \

random seed=2261934443 id=1 output file=output1.csv

This command specifies that sampling should be performed with the model instantiated using
the data in the specified file. The backslash (\) indicates a continued input line. For Windows,
the ./ before the command should be removed and the line continuation replaced with a caret
(^).
The aruments on the continued line are optional and included for the sake of replicability.
Bit-by-bit replicability requires fixing the operating system version, central processing unit,
C++ compiler, and the compiler settings.

Terminal output from sampler

The output is as follows, starting with a summary of the command line options used, including
defaults; these are also written into the sample file as comments.

method = sample (Default)
sample

num_samples = 1000 (Default)
num_warmup = 1000 (Default)
save_warmup = 0 (Default)
thin = 1 (Default)
adapt

engaged = 1 (Default)
gamma = 0.050000000000000003 (Default)
delta = 0.80000000000000004 (Default)
kappa = 0.75 (Default)
t0 = 10 (Default)
init_buffer = 75 (Default)
term_buffer = 50 (Default)
window = 25 (Default)

algorithm = hmc (Default)
hmc

engine = nuts (Default)
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nuts
max_depth = 10 (Default)

metric = diag_e (Default)
stepsize = 1 (Default)
stepsize_jitter = 0 (Default)

id = 1
data

file = bernoulli.data.R
init = 2 (Default)
random

seed = 2261934443
output

file = output1.csv
diagnostic_file = (Default)
refresh = 100 (Default)

Gradient evaluation took 8e-06 seconds
1000 transitions using 10 leapfrog steps per transition would take 0.08 seconds.
Adjust your expectations accordingly!

Iteration: 1 / 2000 [ 0%] (Warmup)
Iteration: 100 / 2000 [ 5%] (Warmup)
...
Iteration: 1000 / 2000 [ 50%] (Warmup)
Iteration: 1001 / 2000 [ 50%] (Sampling)
...
Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.01042 seconds (Warm-up)
0.019595 seconds (Sampling)
0.030015 seconds (Total)

The sampler configuration parameters are echoed; here they are all default values other than
the data file.
The command line parameters marked Default may be explicitly set on the command line.
Each value is preceded by the full path to it in the hierarchy; for instance, to set the maximum
depth for the No-U-Turn sampler (NUTS), the command would be the following, where
backslash indicates a continued line.

> ./bernoulli sample \
algorithm=hmc engine=nuts max_depth=5 \
data file=bernoulli.data.R

Help
A description of all configuration parameters including default values and constraints is avail-
able by executing
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> ./bernoulli help-all

The sampler and its configuration are described at greater length in the manual (Stan Devel-
opment Team 2016).

Sample file output
The output CSV file (comma-separated values), written explicitly to output1.csv, starts
with a summary of the configuration parameters for the run.

# stan_version_major = 2
# stan_version_minor = 14
# stan_version_patch = 0
# model = bernoulli_model
# method = sample (Default)
# sample
# num_samples = 1000 (Default)
# num_warmup = 1000 (Default)
# save_warmup = 0 (Default)
# thin = 1 (Default)
# adapt
# engaged = 1 (Default)
# gamma = 0.050000000000000003 (Default)
# delta = 0.80000000000000004 (Default)
# kappa = 0.75 (Default)
# t0 = 10 (Default)
# init_buffer = 75 (Default)
# term_buffer = 50 (Default)
# window = 25 (Default)
# algorithm = hmc (Default)
# hmc
# engine = nuts (Default)
# nuts
# max_depth = 10 (Default)
# metric = diag_e (Default)
# stepsize = 1 (Default)
# stepsize_jitter = 0 (Default)
# id = 1
# data
# file = bernoulli.data.R
# init = 2 (Default)
# random
# seed = 2261934443
# output
# file = output1.csv
# diagnostic_file = (Default)
# refresh = 100 (Default)
...
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Stan’s behavior is fully specified by these configuration parameters, almost all of which have
default values. By using the same version of Stan and these configuration parameters, exactly
the same output file can be reproduced. The pseudorandom numbers generated by the sampler
are fully determined by the seed (here explicitly specified with value 2261934443) and the
chain identifier (here explicitly specified as 1). The identifier is used to advance the underlying
pseudorandom number generator a sufficient number of values that using multiple chains
with the same seed and different identifiers will draw from different subsequences of the
pseudorandom number stream determined by the seed.
The output continues with a CSV header naming the columns of the output. For the default
NUTS sampler in Stan 2.14.0, the output is as follows (on one line without the backslash).

lp__,accept_stat__,stepsize__,treedepth__,n_leapfrog__,\
divergent__,energy__,theta

The label lp__ is for log densities (up to an additive constant), accept_stat__ is for ac-
ceptance probabilities,4 stepsize__ is for the leapfrog integrator’s step size for simulating
the Hamiltonian, treedepth__ is the depth of tree explored by the no-U-turn sampler (log
base 2 of the number of log density and gradient evaluations), n_leapfrog__ is the number
of density and gradient evaluations, divergent__ is a flag indicating a numerical instability
during numerical integration resulting in the Hamiltonian not being conserved, and energy__
is the Hamiltonian value. The rest of the header will be the names of parameters; in this
example, theta is the only parameter.
The results of step size and mass matrix adaptation are printed as comments.

# Adaptation terminated
# Step size = 1.66784
# Diagonal elements of inverse mass matrix:
# 0.465594

Unless adaptation is turned off, Stan uses the first half of the iterations to estimate a mass
matrix and step size for numerical integration of the the Hamiltonian system. Stan uses a
diagonal mass matrix by default, but may also be configured to use a dense mass matrix or unit
mass matrix. The inverse mass matrix is estimated by regularizing the sample (co)variance
of the latter half of the warmup iterations; see (Stan Development Team 2016) for full details.
The rest of the file contains the sample, one draw per line, matching the header; here the
parameter theta is the final value printed on each line, and each line corresponds to a draw
from the posterior. The warmup iterations are excluded by default, but may be included
with appropriate command configuration. The file ends with comments reporting the elapsed
time.

-6.74818,0.60304,1.66784,1,1,0,7.27164,0.247792
-7.35902,0.800678,1.66784,1,1,0,7.44313,0.401688

4Acceptance is the usual notion for a Metropolis sampler such as HMC (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller 1953). For NUTS, the acceptance statistic is defined as the average acceptance probabilities
of the trajectory states in the proposed tree; the original NUTS algorithm used a slice sampling algorithm
for rejection (Neal 2003; Hoffman and Gelman 2014) whereas Stan 2.14.0 uses a multinomial sampler with
probabilities given by the Hamiltonian (Betancourt 2016).
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-8.12629,0.412962,1.66784,2,3,0,8.97432,0.483505
...
-8.41114,1,1.66784,1,1,0,9.79546,0.0770631
-8.09041,1,1.66784,1,1,0,8.85713,0.0892462
-6.76262,1,1.66784,1,1,0,7.38722,0.22906
#
# Elapsed Time: 0.01042 seconds (Warm-up)
# 0.019595 seconds (Sampling)
# 0.030015 seconds (Total)
#

It is evident from the values sampled for theta in the last column that there is a high degree
of posterior uncertainty in the estimate of theta from the ten data points in the data file.
The log probabilities reported in the first column include not only the model log probabili-
ties but also the Jacobian adjustment resulting from the transformation of the variables to
unconstrained space. In this example, the Jacobian is the absolute derivative of the inverse
logit function; see (Stan Development Team 2016) for the constrained parameter transforms
and their Jacobians.

2.5. Sampler output analysis

Before performing output analysis, we recommend generating multiple independent chains
in order to more effectively monitor convergence (Gelman and Rubin 1992; Gelman, Carlin,
Stern, Dunson, Vehtari, and Rubin 2013). Three more chains of draws can be created as
follows.

./bernoulli sample data file=bernoulli.data.R random seed=2261934443 \
id=1 output file=output1.csv

./bernoulli sample data file=bernoulli.data.R random seed=2261934443 \
id=2 output file=output2.csv

./bernoulli sample data file=bernoulli.data.R random seed=2261934443 \
id=3 output file=output3.csv

These calls illustrate how additional parameters are specified directly on the command line
following the hierarchy given in the output. The backslash (\) at the end of a line indicates
that the command continues on the next line; a caret (^) should be used in Windows.
The chains can be safely run in parallel under different processes; details of parallel execution
depend on the operating system and the shell or terminal program. Although the same seed
is used for each chain, the random numbers will in fact be independent as the chain identifier
is used to skip the pseudorandom number generator ahead. Stan supplies a command line
program bin/stansummary to summarize the output of one or more MCMC chains. Given a
directory containing output from sampling,

> ls output*.csv

output1.csv output2.csv output3.csv output4.csv

posterior summaries are printed using
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Inference for Stan model: bernoulli_model
4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0); thin=(1,1,1,1);
4000 iterations saved.

Warmup took (0.010, 0.011, 0.0100, 0.0099) seconds, 0.041 seconds total
Sampling took (0.020, 0.021, 0.021, 0.020) seconds, 0.082 seconds total

Mean MCSE StdDev 5% 50% 95% N_Eff N_Eff/s R_hat
lp__ -7.3 1.9e-02 0.78 -8.8 -7.0 -6.8 1753 21384 1.0e+00
accept_stat__ 0.86 3.7e-02 0.18 0.50 0.94 1.0 24 288 1.0e+00
stepsize__ 1.5 1.5e-01 0.21 1.3 1.7 1.8 2.0 24 6.9e+13
treedepth__ 1.3 1.3e-01 0.46 1.0 1.0 2.0 13 163 1.1e+00
n_leapfrog__ 1.9 1.6e-01 1.00 1.0 1.0 3.0 37 448 1.0e+00
divergent__ 0.00 0.0e+00 0.00 0.00 0.00 0.00 4000 48801 nan
energy__ 7.8 2.6e-02 1.1 6.8 7.4 9.9 1652 20158 1.0e+00
theta 0.25 2.8e-03 0.12 0.082 0.24 0.47 1851 22586 1.0e+00

Samples were drawn using hmc with nuts.
For each parameter, N_Eff is a crude measure of effective sample size,
and R_hat is the potential scale reduction factor on split chains (at
convergence, R_hat=1).

Figure 2: Output summary for the Bernoulli estimation model in Figure 1.

> $stan/bin/stansummary output*.csv

The output is shown in Figure 2.5 Each row of the output summarizes a different value whose
name is provided in the first column. These correspond to the columns in the output CSV
files. The analysis includes estimates of the posterior mean (Mean) and standard deviation
(StdDev). Quantiles for the median (50%) and the 90% posterior interval (5%, 95%) are also
displayed; the quantiles printed can be configured.
The remaining columns in the output provide an analysis of the sampling and its efficiency.
The convergence diagnostic that is built into the bin/stansummary command is the estimated
potential scale reduction statistic R̂ (Rhat); its value should be close to 1.0 when the chains
have all converged to the same stationary distribution. Stan uses a more conservative version
of R̂ than is usual in packages such as coda (Plummer, Best, Cowles, and Vines 2006), first
splitting each chain in half to diagnose nonstationary chains; see (Gelman et al. 2013) and
(Stan Development Team 2016) for definitions.
The column N_eff reports the effective sample size for a chain. Because MCMC methods
produce a sample containing correlated draws in each chain, estimates such as posterior
means are not expected to be as precise as they would be with truly independent draws. The

5Aligning columns when printing rows of varying scales presents a challenge. For each column, the program
calculates the the maximum number of digits required to print an entry in that column with the specified
precision. For example, a precision of 2 for the number −0.000012 requires nine characters (-0.000012)
to print without scientific notation versus seven digits with (-1.2e-5). If the discrepancy is above a fixed
threshold, scientific notation is used. Compare the results in the mean column versus the MCSE (Markov chain
standard error) column.
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effective sample size is an estimate of the number of independent draws that would lead to
the same expected precision. The Monte Carlo standard error (MCSE) is an estimate of the
error in estimating the posterior mean based on dividing the posterior standard deviation
estimate by the square root of the effective sample size (sd / sqrt(n_eff)). Geyer (2011)
provides a thorough introduction to effective sample size and MCSE estimation. Stan uses
more conservative estimates based on both within-chain and cross-chain convergence; see
(Gelman et al. 2013) and (Stan Development Team 2016) for motivation and definitions.
Because estimation accuracy is governed by the square root of the effective sample size,
effective sample size per second (or its inverse) is the most relevant statistic for comparing the
efficiency of sampler implementations. Compared to BUGS and JAGS, Stan is often relatively
slow per iteration but relatively fast to generate a target effective sample size.
In this example, the estimated effective sample size (n_eff) is 1776, which is far greater than
we typically need for inference. The posterior mean here is estimated to be 0.25 with an
MCSE of 0.003. Because the model is conjugate, the exact posterior is known to be p(θ | y) =
Beta(θ | 3, 9), which has a mean of 3/(3 + 9) = 0.25 and a mode of (3− 1)/(3 + 9− 2) = 0.2.

2.6. Estimators

Stan provides several ways to compute point estimates of parameters. The standard Bayesian
approach is to use posterior means or medians, as computed by MCMC. The posterior mode,
when it exists, is another popular estimator (providing what is sometimes called the maximum
a posteriori (MAP) estimate). Stan programs can be interpreted as defining penalized log
likelihood functions rather than posterior log densities, in which case the mode is the penalized
maximum likelihood estimate (MLE).

Modes with optimization

The posterior mode (or penalized MLE) of the parameters conditioned on the data given the
model can be found by using one of Stan’s built-in optimizers.The following command invokes
optimization for the Bernoulli model using default configuration parameters for everything but
the random seed, which is included for replicability following the line-continuation backslash.

> ./bernoulli optimize data file=bernoulli.data.R \
random seed=2261934443 output file=opt-fit.csv

method = optimize
optimize

algorithm = lbfgs (Default)
lbfgs

init_alpha = 0.001 (Default)
tol_obj = 9.9999999999999998e-13 (Default)
tol_rel_obj = 10000 (Default)
tol_grad = 1e-08 (Default)
tol_rel_grad = 10000000 (Default)
tol_param = 1e-08 (Default)
history_size = 5 (Default)

iter = 2000 (Default)
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save_iterations = 0 (Default)
id = 0 (Default)
data

file = bernoulli.data.R
init = 2 (Default)
random

seed = 2261934443
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

initial log joint probability = -10.8352
Iter log prob ||dx|| ||grad||

6 -5.00402 0.000165244 5.44531e-07

alpha alpha0 # evals Notes
1 1 9

Optimization terminated normally:
Convergence detected: relative gradient magnitude is below tolerance

The final lines of the output indicate normal termination after seven iterations by convergence
of the objective function (here the log density or penalized log likelihood) to within the default
tolerance of 1e-08. The other values include final value of the log probability function (log
prob), length of the difference between the current iteration’s value of the parameter vector
and the previous value (||dx||), and the length of the gradient vector (||grad||).
The optimizer terminates when any of the log density, gradient, or parameter values are within
their specified tolerance. The default optimizer uses the limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm, a quasi-Newton method which employs gradients and
a memory and time efficient approximation to the Hessian (Nocedal and Wright 2006).

Optimizer output file

By default, optimization results are written into a valid CSV file, here specified to be
opt-fit.csv.

# stan_version_major = 2
# stan_version_minor = 14
# stan_version_patch = 0
# model = bernoulli_model
# method = optimize
# optimize
# algorithm = lbfgs (Default)
# lbfgs
# init_alpha = 0.001 (Default)
# tol_obj = 9.9999999999999998e-13 (Default)
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# tol_rel_obj = 10000 (Default)
# tol_grad = 1e-08 (Default)
# tol_rel_grad = 10000000 (Default)
# tol_param = 1e-08 (Default)
# history_size = 5 (Default)
# iter = 2000 (Default)
# save_iterations = 0 (Default)
# id = 0 (Default)
# data
# file = bernoulli.data.R
# init = 2 (Default)
# random
# seed = 2261934443
# output
# file = output.csv (Default)
# diagnostic_file = (Default)
# refresh = 100 (Default)
lp__,theta
-5.00402,0.2

As with the sampler output, the configuration of the optimizer is dumped as CSV comments
(lines beginning with #). Then there is a header, listing the log density, lp__, and the single
parameter name, theta. The next line shows that the posterior mode for theta is 0.200002,
matching the true posterior mode of 0.20 very closely.
Optimization is carried out on the unconstrained parameter space, but without the Jacobian
adjustment to the log density. This ensures modes are defined with respect to the constrained
parameter space as declared in the parameters block and used in the model specification.

2.7. Diagnostic mode

Stan provides a diagnostic mode that evaluates the log density and its gradient at the initial
parameter values (either user supplied or generated randomly based on the specified or default
seed). The seed and chain ID are set so that the point evaluated is the initialization of the
first MCMC chain run above.

> ./bernoulli diagnose data file=bernoulli.data.R \
id=1 random seed=2261934443

method = diagnose
diagnose

test = gradient (Default)
gradient

epsilon = 9.9999999999999995e-07 (Default)
error = 9.9999999999999995e-07 (Default)

id = 0 (Default)
data

file = bernoulli.data.R
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init = 2 (Default)
random

seed = 2261934443
output

file = output.csv (Default)
diagnostic_file = (Default)
refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-12.4362

param idx value model finite diff error
0 0.943403 -5.63744 -5.63744 1.06921e-09

Here, a random initialization is used and the initial log density is -12.4362 and the single
parameter theta, here represented by index 0, has a value of 0.943403 on the unconstrained
scale (inverse-logit transformed to 0.7198 on the constrained scale). The derivative supplied
by the model and by a finite differences calculation are the same to within 1.06921e-09.
Non-finite log densities or derivatives indicate a problem with the model in terms of con-
straints on parameter values, function input constraints being violated, boundary conditions
arising in function evaluations, and sometimes overflow or underflow issues with floating-point
calculations. Large relative discrepancies between the model’s gradient calculation and finite
differences can indicate a bug in the model or even in Stan’s algorithmic differentiation for a
function in the model.

2.8. Roadmap for the rest of the paper

Now that the key functionality of Stan has been demonstrated, the remaining sections cover
specific aspects of Stan’s architecture. Section 3 covers variable data type declarations as well
as expressions and type inference, Section 4 describes the top-level blocks and execution of a
Stan program, Section 5 lays out the available statements, and Section 6 the built-in math,
matrix, and probability function library. Section 7 lays out MCMC and optimization-based
inference. There are two appendices, Appendix A outlining the development process and
Appendix B detailing the library dependencies.

3. Data types
All expressions in Stan are statically typed, including variables. This means their type is
declared at compile time as part of the model, and does not change throughout the execution
of the program. This is the same behavior as is found in compiled programming languages
such as C/C++, Fortran, and Java, but is unlike the behavior of interpreted languages such as
BUGS, R, and Python. Statically typing the variables (as well as declaring them in appropriate
blocks based on usage) makes Stan programs easier to read and easier to debug by making
explicit the modeling decisions and expression types.
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3.1. Primitive types

The primitive types of Stan are real and int, which are used to represent continuous and
integer values. These values are represented directly in C++ as types double and int. Integer
expressions can be used anywhere a real value is required, but not vice-versa.

3.2. Vector and matrix types

Stan supports vectors, row vectors, and matrices with the usual access operations. Vectors
are declared with their sizes and matrices with their number of rows and columns. Vector,
row vector, and matrix elements are accessed using bracket notation, as in y[3] for the third
element of a vector or row vector and a[2, 3] for the element in the third column of the
second row of a matrix. Indexing begins from 1. The notation a[2] accesses the second row
of matrix a.
Multiple indexing may be applied, with syntax following that of R and MATLAB. For example,
if a is a vector containing at least four elements, then a[2:4] has elements a[2], a[3], and
a[4]. Either or both bounds may be omitted, in which case they default to the first and last
element in the vector. For example, a[3:] has two fewer elements than a and is defined so
that a[3:][i] evaluates to a[2 + i]. If n is an array of integers, then a[n] is a vector with
the same size as n and is defined so that a[n][i] evaluates to a[n[i]].
All vector and matrix types contain real values and may not be declared to hold integers.
Collections of integers are represented using arrays.

3.3. Array types

An array may have entries of any other type. For example, arrays of integers and reals are
allowed, as are arrays of vectors or arrays of matrices.
Higher-dimensional arrays are intrinsically arrays of arrays. An entry in a two-dimensional
array y may be accessed as y[1,2]. The expression y[1] by itself denotes the one-dimensional
array whose values correspond to the first row of y. Thus y[1][2] has the same value as
y[1,2].6 Unlike integers, which may be used where real values are required, arrays of integers
may not be used where real arrays are required.7

The manual contains a chapter discussing the efficiency tradeoffs and motivations for sepa-
rating arrays and matrices.

3.4. Constrained variable types

Variables may be declared with constraints. The constraints have different effects depending
on the block in which the variable is declared.
Integer and real types may be provided with lower bounds, upper bounds, or both. This
includes the types used in arrays, and the real types used in vectors and matrices.
Vector types may be constrained to be unit simplexes (all entries non-negative and summing
to one), unit length vectors (sum of squares is one), ordered (entries are in ascending order),

6Arrays are stored internally in row-major order and matrices in column-major order. Stan’s input and
output matches R’s use of column-major order, with arrays being converted internally.

7In the language of type theory, Stan arrays are not covariant. This follows the behavior of both arrays and
standard library containers in C++ and Java.
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positive ordered (entries in ascending order, all non-negative), using the types simplex[K],
unit_vector[K], ordered[K], and positive_ordered[K], where K is the size of the vector.
Matrices may be constrained to be covariance or precision matrices (symmetric, positive def-
inite) or correlation matrices (symmetric, positive definite, unit diagonal), using the types
cov_matrix[K] and corr_matrix[K]. For efficient and stable arithmetic, matrices may also
be defined to be Cholesky factors of covariance or correlation matrices, using the types
cholesky_factor_cov[K] and cholesky_factor_corr[K].

3.5. Expressions

The syntax of Stan is defined in terms of expressions and statements. Expressions denote
values of a particular type. Statements represent operations such as assignment and incre-
menting the log density as well as control structures such as for loops and conditionals.
Stan provides the usual kinds of expressions found in programming languages. This includes
variables, literals denoting integers, real values or strings, binary and unary operators over
expressions, and function application.

Type inference
The type of a numeric literal is determined by whether or not it contains a period or scientific
notation; for example, 20 has type int whereas 20.0 and 2e+1 have type real.
The type of applying an operator or a function to one or more expressions is determined by
the available signatures for the function. For example, the multiplication operator (*) has a
signature that maps two int arguments to an int and two real arguments to a real result.
Another signature for the same operator maps a row_vector and a vector to a real result.

Type promotion
If necessary, an integer type will be promoted to a real value. For example, multiplying an
int by a real produces a real result by promoting the int argument to a real.

4. Top-level blocks and program execution
In the rest of this paper, we will concentrate on the modeling language and how compiled
programs are executed. These details are the same whether a Stan program is being used by
one of the built-in samplers or optimizers or being used externally by a user-defined sampler
or optimizer.
We begin with an example that will be used throughout the rest of this section. (Gelman et al.
2013, Section 5.1) define a hierarchical model of the incidence of tumors in rats in control
groups across trials; a very similar model is defined for mortality rates in pediatric surgeries
across hospitals in (Lunn et al. 2000, 2009, Examples, Volume 1). A Stan implementation is
provided in Figure 3. In the rest of this section, we will walk through what the meaning of
the various blocks are for the execution of the program.

4.1. Data block

A Stan program starts with an (optional) data block, which declares the data required to fit



www.manaraa.com

16 Stan: A Probabilistic Programming Language

data {
int<lower=0> J; // number of items
int<lower=0> y[J]; // number of successes for j
int<lower=0> n[J]; // number of trials for j

}
parameters {

real<lower=0, upper=1> theta[J]; // chance of success for j
real<lower=0, upper=1> lambda; // prior mean chance of success
real<lower=0.1> kappa; // prior count

}
transformed parameters {

real<lower=0> alpha = lambda * kappa; // prior success count
real<lower=0> beta = (1 - lambda) * kappa; // prior failure count

}
model {

lambda ~ uniform(0, 1); // hyperprior
kappa ~ pareto(0.1, 1.5); // hyperprior
theta ~ beta(alpha, beta); // prior
y ~ binomial(n, theta); // likelihood

}
generated quantities {

real<lower=0,upper=1> avg = mean(theta); // avg success
int<lower=0, upper=1> above_avg[J]; // true if j is above avg
int<lower=1, upper=J> rnk[J]; // rank of j
int<lower=0, upper=1> highest[J]; // true if j is highest rank
for (j in 1:J) {

above_avg[j] = (theta[j] > avg);
rnk[j] = rank(theta, j) + 1;
highest[j] = (rnk[j] == 1);

}
}

Figure 3: Hierarchical binomial model with posterior predictive quantities, coded in Stan.

the model. This is a very different approach to modeling and declarations than in BUGS and
JAGS, which determine which variables are data and which are parameters at run time based
on the shape of the data input to them. These declarations make it possible to compile Stan
to much more efficient code.8 Missing data models may still be coded in Stan, but the missing
values must be declared as parameters; see (Stan Development Team 2016) for examples of
missing data, censored data, and truncated data models.
In the model in Figure 3, the data block declares an integer variable J for the number of groups

8The speedup is because coding data variables as double types in C++ is much faster than promoting all
values to algorithmic differentiation class variables.
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in the hierarchical model. The arrays y and n have size J, with y[j] being the number of
positive outcomes in n[j] trials.
All of these variables are declared with a lower-bound constraint restricting their values to
be greater than or equal to zero. The constraint language for Stan is not strong enough to
restrict each y[j] to be less than or equal to n[j].
The data for a Stan program is read in once as the C++ object representing the program is
constructed. After the data is read in, the constraints are validated. If the data does not
satisfy the declared constraints, the program will throw an exception with an informative
error message, which is displayed to the user in the command line, R, and Python interfaces.

4.2. Transformed data block
The Stan program in Figure 3 does not have a transformed data block. A transformed
data block may be used to define new variables that can be computed based on the data.
For example, standardized versions of data can be defined in a transformed data block or
Bernoulli trials can be summed to model as binomial. Any constants needed by the program
should also be defined in the transformed data block.
The transformed data block starts with a sequence of variable declarations and continues with
a sequence of statements defining the variables. For example, the following transformed data
block declares a vector x_std, then defines it to be the standardization of x:

transformed data {
vector[N] x_std = (x - mean(x)) / sd(x);

}

The transformed data block is executed during construction, after the data is read in. Any
data variables declared in the data block may be used in the variable declarations or state-
ments. Transformed data variables may be used after they are declared, although care must
be taken to ensure they are defined before they are used. Any constraints declared on trans-
formed data variables are validated after all of the statements are executed, with execution
terminating with an informative error message at the first variable with an invalid value.

4.3. Parameter block
The parameter block in the program in Figure 3 defines three parameters. The parameter
theta[j] represents the probability of success in group j. The prior on each theta[j]
is parameterized by a mean chance of success lambda and count kappa. Both theta[j]
and lambda are constrained to fall between zero and one. The Pareto distribution requires
a strictly positive lower bound, so kappa is constrained to be greater than or equal to a
conservative bound of 0.1 to match the support of the Pareto hyperprior it receives in the
model block.
The parameter block is executed every time the log density is evaluated. This may be multiple
times per iteration of a sampling or optimization algorithm.

Implicit change of variables to unconstrained space
The probability distribution defined by a Stan program is intended to have unconstrained sup-
port (i.e., no points of zero probability), which greatly simplifies the task of writing samplers
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or optimizers. To achieve unbounded support, variables declared with constrained support
are transformed to an unconstrained space. For instance, variables declared on [0, 1] are log-
odds transformed and non-negative variables declared to fall in [0,∞) are log transformed.9
More complex transforms are required for simplexes (a reverse stick-breaking transform) and
covariance and correlation matrices (Cholesky factorization). The dimensionality of the re-
sulting probability function may change as a result of the transform. For example, a K ×K
covariance matrix requires only

(K
2

)
+K unconstrained parameters, and a K-simplex requires

only K − 1 unconstrained parameters.
The unconstrained parameters over which the model is defined are inverse transformed back
to satisfy their constraints before executing any statements in the model block. To account
for the change of variables, the log absolute Jacobian determinant of the inverse transform
is added to the overall log density.10 The gradients of the log density include the Jacobian
term.
There is no validation required for the parameter block because the variable transforms are
guaranteed to produce values that satisfy the declared constraints.

4.4. Transformed parameters block

The transformed parameters block allows users to define transforms of parameters within
a model. Following the model in (Gelman et al. 2013), the example in Figure 3 uses the
transformed parameter block to define transformed parameters alpha and beta for the prior
success and failure counts to use in the beta prior for theta.
Following the same convention as the transformed data block, the (optional) transformed pa-
rameter block begins with declarations of the transformed parameters, followed by a sequence
of statements defining them. Variables from previous blocks as well as the transformed pa-
rameters block may be used. In the example, the prior success and failure counts alpha and
beta are defined in terms of the prior mean lambda and total prior count kappa.
The transformed parameter block is executed after the parameter block. Constraints are
validated after all of the statements defining the transformed parameters have executed.
Failure to validate a constraint results in an exception being thrown, which halts the execution
of the log density function. The log density function can be defined to return negative infinity
or the special not-a-number value, both of which are available through built-in functions and
may be passed to the target density increment statement (see below).
If transformed parameters are used on the left-hand side of a sampling statement, it is up
to the user to add the appropriate log absolute Jacobian determinant adjustment to the log
density accumulator. For instance, a lognormal variate could be generated as follows without
the built-in lognormal density function using the normal density as

parameters {
real<lower=0> u;
...

9Values on the boundaries will be transformed to positive or negative infinity as is the standard for floating-
point computer arithmetic.

10For optimization, the Jacobian adjustment is suppressed to guarantee the optimizer finds the maximum
of the log density function on the constrained parameters. The calculation of the Jacobian is controlled by a
template parameter in C++.
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transformed parameters {
real v = log(u);

}
model {

v ~ normal(0, 1); // distribution on transformed parameter
target += u; // log density Jacobian adjustment

}

The transform is f(u) = log u, the inverse transform is f−1(v) = exp v, so the absolute log
Jacobian determinant is | d

dv exp v| = exp v = u. Whenever a transformed parameter is used
on the left side of a sampling statement, a warning is printed to remind the user of the need
for a Jacobian adjustment for the change of variables. The log density increment statement
(target +=) is used to add u to the log density defined by the rest of the program.
Values of transformed parameters are saved in the output along with the parameters. As an
alternative, local variables may be used to define temporary values in the model block.

4.5. Model block

The purpose of the model block is to define the log density on the constrained parameter
space. The example in Figure 3 has a simple model containing four sampling statements.
The hyperprior on the prior mean lambda is uniform, and the hyperprior on the prior count
kappa is a Pareto distribution with lower-bound of support at 0.1 and shape 1.5, leading to
a probability of κ > 0.1 proportional to κ−5/2. Note that the hierarchical prior on theta is
vectorized: each element of theta is drawn independently from a beta distribution with prior
success count alpha and prior failure count beta. Both alpha and beta are transformed
parameters, but because they are only used on the right-hand side of a sampling statement
do not require a Jacobian adjustment of their own. The likelihood function is also vectorized,
with the effect that each success count y[i] is drawn from a binomial distribution with
number of trials n[i] and chance of success theta[i]. In vectorized sampling statements,
scalar values will be repeated as many times as necessary.
The model block is executed after the transformed parameters block every time the log density
is evaluated.

Implicit uniform priors

The default distribution for a parameter is uniform over its declared (constrained) support.
For instance, a variable declared with a lower bound of 0 and an upper bound of 1 implicitly
receives a Uniform(0, 1) distribution. These implicit uniform priors are improper if the variable
has unbounded support. For instance, the uniform distributions over real values with upper
and lower bounds, simplexes, and correlation matrices is proper, but the uniform distribution
over unconstrained or one-side constrained reals, ordered vectors or covariance matrices are
not proper.
Stan does not require proper priors, but if the posterior is improper, Stan will halt with an
error message.11

11Improper posteriors are diagnosed automatically when parameters overflow to infinity during simulation.
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4.6. Generated quantities block

The (optional) generated quantities block allows values that depend on parameters and data,
but do not affect estimation, to be defined efficiently. It may be used to calculate predictive
inferences as well as to carry out forward simulation for posterior predictive checks; see
(Gelman et al. 2013) for examples. Pseudorandom number generators are also available
in the generated quantities block. The generated quantities block is called only once per
iteration, not once per log density evaluation. Calculations in the generated quantities block
are also more efficient because they do not require gradients.

The BUGS surgical example explored the ranking of institutions in terms of surgical mortality
(Lunn et al. 2000, Examples, Volume 1). This is coded in the example in Figure 3 using the
generated quantities block. The generated quantity variable rnk[j] will hold the rank of
institution j from 1 to J in terms of mortality rate theta[j]. The ranks are extracted using
the rank function. The posterior summary will print average rank and deviation. (Lunn et al.
2000) illustrated posterior inference by plotting posterior rank histograms.

Posterior comparisons can be carried out directly or using rankings. For instance, the model
in Figure 3 sets highest[j] to 1 if hospital j has the highest estimated mortality rate. For
a discussion of multiple comparisons and hierarchical models, see (Gelman, Hill, and Yajima
2012; Efron 2010).

As a second illustration, the generated quantities block in Figure 3 calculates the (posterior)
probability that a given institution is above average in terms of mortality rate. This is done
for each institution j with the usual plug-in estimate of theta[j] > mean(theta), which
returns a binary (0 or 1) value. The posterior mean of above_avg[j] calculates the posterior
probability Pr[θj > θ̄ | y, n].

4.7. Initialization

Stan’s samplers and optimizers all start from either random or user-supplied values for each
parameter. User-supplied initial values are validated and transformed to the underlying un-
constrained space; if a parameter value does not satisfy its declared constraints, the program
exits and an informative error message is printed. For each variable that is not initialized,
the built-in pseudorandom number generator is called once per unconstrained variable dimen-
sion. The default initialization is to randomly generate values uniformly on [−2, 2]; another
symmetric interval around zero may be configured. This supplies diffuse starting points when
transformed back to the constrained scale, facilitating convergence diagnostics (Gelman et al.
2013). Models with more data or more elaborate structure require narrower intervals for
initialization to ensure the sampler is able to quickly locate the high mass region of the
posterior.

Although Stan is quite effective at converging from diffuse random initializations, the user
may supply their own initial values for sampling, optimization, or diagnosis. The top-level
command line option configures a file from which to read initial values for parameters in the
same R dump format used for data.
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5. Statements

5.1. Assignment and sampling
Stan supports the same two basic statements as BUGS, assignment and sampling, examples
of which were introduced earlier. In BUGS, these two kinds of statement define a directed
acyclic graphical model; in Stan, they define a log density function.

Log density accumulator
There is an implicitly defined log density accumulator, the current value of which is available
through the nullary function target().

Sampling statements
A sampling statement is nothing more than shorthand for incrementing the log density accu-
mulator. For example, if beta is a parameter of type real, the sampling statement

beta ~ normal(0, 1);

has the exact same effect (up to dropping constant terms) as the incrementing the log density
directly with the value of the log probability density function for the normal distribution
using the target increment statement

target += normal_lpdf(beta | 0, 1);

Define variables before sampling statements
The translation of sampling statements to log density function evaluations explains why vari-
ables must be defined before they are used. In particular, a sampling statement does not draw
the left-hand side variable from the right-hand side distribution.
Parameters are all defined externally by the sampler; local variables must be explicitly defined
with an assignment statement before being used.

Direct definition of probability functions
Because computation is only up to a proportionality constant (an additive constant on the
log scale), this sampling statement in turn has the same effect as the direct implementation
in terms of basic arithmetic,

target += -0.5 * beta^2;

If beta is of type vector, replace the square with the vector product beta’ * beta, or
the more efficient dot_self(beta). Distributions whose probability functions are not built
directly into Stan can be implemented directly in this fashion.

5.2. Sequences of statements and execution order
Stan allows sequences of statements wherever statements may occur. Unlike BUGS, in which
statements define a directed acyclic graph, in Stan, statements are executed imperatively in
the order in which they occur in a program.
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Blocks and variable scope

Sequences of statements surrounded by curly braces ({ and }) form blocks. Blocks may start
with local variable declarations. The scope of a local variable (i.e., where it is available to be
used) is that of the block in which it is declared.
Variables declared in the top-level blocks (data, transformed data, parameters, transformed
parameters, generated quantities), may only be assigned to in the block in which they are
declared. They may be used at any point after they are declared, including subsequent blocks.

5.3. Whitespace, semicolons, and comments

Following the convention of C++, statements are separated with semicolons in Stan so that
the content of whitespace (outside of comments) is irrelevant. This is in contrast to BUGS
and R, in which carriage returns are special and may indicate the end of a statement.
Stan supports the line comment style of C++, using two forward slashes (//) to comment
out the rest of a line; this is the one location where the content of whitespace matters. Stan
also supports C++-style block comments, with everything between the start-comment (/*)
and end-comment (*/) markers being ignored.
The preferred style follows that of C++, with line comments used for everything but multiline
comments. Stan follows the C++ convention of separating words in variable names using
underbars (_), rather than dots (.), as used in R and BUGS, or camel case as used in Java.
Camel case is valid Stan syntax, but dots may not be used in variable names.

5.4. Control structures

Stan supports the same kind of explicitly bounded for loops as found in BUGS and R. Like
R, but unlike BUGS, Stan supports while loops and conditional (if-then-else) statements, as
well as break and continue statements.12 Stan provides the usual comparison operators and
boolean operators to help define conditionals and condition-controlled while loops.

5.5. Print and reject statements

Stan provides print statements which take arbitrarily many arguments consisting of expres-
sions or string literals consisting of sequences of characters surrounded by double quotes (").
These statements may be used for debugging purposes to report on intermediate states of
variables or to indicate how far execution has proceeded before an error.
As an example, suppose a user’s program raises an error at run time because a covariance
matrix defined in the transformed parameters block fails its symmetry constraint.

transformed parameters {
cov_matrix[K] Sigma;
for (m in 1:M)

for (n in m:M)
Sigma[m, n] <- Omega[m, n] * sigma[m] * sigma[n];

12BUGS omits these control structures because they would introduce data- or parameter-dependency into
the directed, acyclic graph defined by model.



www.manaraa.com

Journal of Statistical Software 23

print("Sigma=", Sigma);
}

The print statement added at the last line will print the values in the matrix before the
validation occurs at the end of the transformed parameters block.
Stan also supports reject statements which may be used to halt execution and return a mean-
ingful error message. Like print statements, they take any number of string and expression
arguments.

if (n > size(x))
reject("Index out of bounds, n = ", n,

"; required n < size(x) = ", size(x));

6. Function and distribution library
Stan is translated to C++ code that depends on the Stan math library to compute special
functions, probability functions, matrix arithmetic and linear algebra, and solutions to or-
dinary differential equation (Carpenter, Hoffman, Brubaker, Lee, Li, and Betancourt 2015).
In order to support the efficient algorithmic differentiation required to calculate gradients,
Hessians, and higher-order derivatives in Stan, C++ functions must be templated separately
for each argument. In order for these functions to be efficient in computing both values and
derivatives, they need to operate directly on vectors of arguments so that shared computa-
tions can be reused. For example, if y is a vector and sigma is a scalar, the logarithm of
sigma need only be evaluated once in order to compute the normal density for every member
of y in

y ~ normal(mu, sigma);

6.1. Basic operators

Stan supports all of the basic C++ arithmetic operators, boolean operators, and compar-
ison operators. In addition, it extends the arithmetic operators to matrices and includes
elementwise matrix operators, left and right matrix division, and transposition.13

6.2. Special functions

Stan provides an especially rich set of special functions. This includes all of the C++ math
library functions, as well as numerous more specialized functions such as Bessel functions,
gamma and digamma functions, and generalized linear model link functions and their in-
verses. There are also many compound functions, such as log1m(x), which is more stable
arithmetically for values of x near 0 than log(1 - x).
In addition to special functions, Stan includes distributions with alternative parameteriza-
tions, such as bernoulli_logit, which takes a parameter on the log odds (i.e., logit) scale.

13This is in contrast to R and BUGS, which treat the basic multiplication and division operators pointwise
and use special symbols for matrix operations.
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This allows a more concise notation for generalized linear models as well as more efficient and
arithmetically stable execution.

6.3. Matrix and linear algebra functions

Rows, columns, and subblocks of matrices can be accessed using row, col, and block func-
tions. Slices of arrays can be accessed using the head, tail, and segment functions. There are
also special functions for creating a diagonal matrix from a vector and accessing the diagonal
of a vector.
Various reductions are provided for arrays and matrices, such as sums, means, standard
deviations, and norms. Replications are also available to copy a value into every cell of a
matrix.
Matrix operators use the types of their operands to determine the type of the result. For
example, multiplying a vector by a (column) row vector returns a matrix, whereas multiplying
a row vector by a (column) vector returns a real. A postfix apostrophe (’) is used for matrix
and vector transposition. For example, if y and mu are vectors and Sigma is a square matrix,
all of the same dimensionality, then y - mu is a vector, (y - mu)’ is a row vector, (y - mu)’
* Sigma is a row vector, and (y - mu)’ * Sigma * (y - mu) will be a real value. Matrix
division is provided, which is much more arithmetically stable than inversion, e.g., (y - mu)’
/ Sigma computes the same function as (y - mu)’ * inverse(Sigma). Stan also supports
elementwise multiplication (.*) and division (./).
Linear algebra functions are provided for trace, left and right division, Cholesky factorization,
determinants and log determinants, inverses, eigenvalues and eigenvectors, and singular value
decomposition. All of these operations may be applied to matrices of parameters or constants.
Various functions are specialized for speed, such as quadratic products, diagonal specializa-
tions, and multiply by self transposed; e.g., the previous example (y - mu)’ * Sigma * (y
- mu) could be coded as as quad_form_diag(Sigma, y - mu).

6.4. Probability functions

Stan supports a growing collection of built-in univariate and multivariate probability density
and mass functions. These probability functions share various features of their declarations
and behavior.
All probability functions are defined on the log scale to avoid underflow. They are all
named with the suffix _lpdf or _lpmf depending on whether they are density or mass func-
tions, e.g., normal_lpdf is the log-scale normal distribution probability density function and
poisson_lpmf is the log scale Poisson probability mass function.
All probability functions check that their arguments are within the appropriate constrained
support and are configured to throw exceptions and print error messages for out-of-domain
arguments (the behavior of positive and negative infinity and not-a-number values are built
into floating-point arithmetic). For example, normal_lpdf(y | mu, sigma) requires the
scale parameter sigma to be non-negative. Exceptions that are raised by functions will be
caught and their warning messages will be printed for the user. Log density evaluations in
which exceptions are raised are treated as if they had evaluated to negative infinity, and are
thus rejected by the sampler or optimizer.
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Up to a proportion calculations

All probability functions support calculating results up to a constant proportion, which be-
comes an additive constant on the log scale. Constancy here refers to being a numeric literal
such as 1 or 0.5, a constant function such as pi(), data and transformed data variables, or
a function that only depends on literals, constant functions or data variables.
Non-constants include parameters, transformed parameters, local variables declared in the
transformed parameters or model statements, as well as any expression involving a non-
constant.
Constant terms are dropped from probability function calculations at the time the model is
compiled, so there is no run-time overhead to decide which expressions denote constants.14

For example, executing y ~ normal(0, sigma) only evaluates log(sigma) if sigma is a
parameter, transformed parameter, or a local variable in the transformed parameters or model
block; that is, log(sigma) is not evaluated if sigma is constant as defined above.
Constant terms are not dropped in explicit function evaluations, such as normal_lpdf(y |
0, sigma).

Vector arguments and shared computations

All of the univariate probability functions in Stan are implemented so that they accept ar-
rays or vectors as arguments. For example, although the basic signature of the probability
function normal_lpdf(y | mu, sigma) involves real y, mu and sigma, it supports calls in
which any any or all of y, mu and sigma contain more than one element. A typical use case
would be for linear regression, such as y ~ normal(X * beta, sigma), where y is a vector of
observed data, X is a predictor matrix, beta is a coefficient vector, and sigma is a real value
for the noise scale.
The advantage of using vectors is twofold. First, the models are more concise and closer to
mathematical notation. Second, the vectorized versions are much faster. They reduce the
number of times expensive operations need to be evaluated and stored as well as reducing
the number of virtual function calls required in the compiled C++ executable for calculating
gradients and higher-order derivatives. For example, if sigma is a parameter, then in evalu-
ating y ~ normal(X * beta, sigma), the logarithm of sigma need only be computed once;
if either y or beta is an N -vector, it also reduces the number of virtual function calls in C++
from N to 1.

7. Built-in inference engines

Stan includes Markov chain Monte Carlo (MCMC) samplers and optimizers. Others may be
straightforwardly implemented within Stan’s C++ framework for sampling and optimization
using the log density and derivative functions supplied by a model.

14Both vector arguments and dropping constant terms are implemented in C++ through template metapro-
grams that infer traits of template arguments to the probability functions. Whether to drop constants is
configurable through a boolean template parameter on the log density and derivative functions generated in
C++ for a model.
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7.1. Markov chain Monte Carlo samplers

Hamiltonian Monte Carlo

The MCMC samplers provided include Euclidean Hamiltonian Monte Carlo (EHMC, which
in much of the literature is referenced as simply HMC, Duane, Kennedy, Pendleton, and
Roweth 1987; Neal 1994, 2011) and the no-U-turn sampler (NUTS, Hoffman and Gelman
2014; Betancourt 2016). Both the basic and NUTS versions of HMC allow estimation or
specification of unit, diagonal, or full mass matrices. NUTS, the default sampler for Stan,
automatically adapts the number of leapfrog steps, eliminating the need for user-specified
tuning parameters. Both algorithms take advantage of gradient information in the log density
function to generate coherent motion through the posterior that dramatically reduces the
autocorrelation of the resulting transitions.

7.2. Optimizers

In addition to performing full Bayesian inference via posterior sampling, Stan also can per-
form optimization (i.e., computation of the posterior mode). We are currently working on
implementing other optimization-based inference approaches including variational Bayes, ex-
pectation propagation, and and marginal inference using approximate integration. All these
algorithms require optimization steps.

L-BFGS

The default optimizer in Stan is the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) optimizer (Nocedal and Wright 2006). L-BFGS is a quasi-Newton optimizer that
evaluates gradients directly, then uses a limited history of gradients to update an approxima-
tion to the Hessian.

Conjugate gradient

Stan provides a standard form of conjugate gradient optimization (Nocedal and Wright 2006).
As its name implies, conjugate gradient optimization requires gradient evaluations.

Newton

Additionally, Stan implements a straightforward version of Newton’s algorithm (Nocedal and
Wright 2006), using gradients and Hessians.

8. Conclusion
Stan is a probabilistic programming language which allows users to specify a broad range
of statistical models involving continuous parameters by coding their log posteriors (or pe-
nalized maximum likelihood) up to a proportion. Random variables are first-class objects
and behave as expected under transformations. Stan provides full Bayesian inference for
posterior expectations including parameter estimation and posterior predictive inference by
defining appropriate derived quantities of interest. Stan implements full Bayesian inference
with adaptive Hamiltonian Monte Carlo sampling and penalized maximum likelihood estima-



www.manaraa.com

Journal of Statistical Software 27

tion with quasi-Newton optimization. Stan is implemented in standards-compliant C++, runs
on all major computer platforms, and can be used interactively through interface languages
including R and Python.
Appendix A describes the development process and Appendix B describes the library depen-
dencies for Stan.

Computational details
The commands in this paper were run using cmdstan 2.14.0 on a Mac OS X version 10.10.5
on a Macbook Pro (Retina Mid 2012) with 2.3 GHz Intel Core i7 and clang++ version Apple
LLVM version 7.0.2 (clang-700.1.81) installed through Xcode. All examples were compiled at
optimization level 3 and run in a fresh default terminal.
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A. Developer process

A.1. Version control and source repository

Stan’s source code is hosted on GitHub and managed using the Git version control system
(Chacon 2009). To manage the workflow with so many developers working at any given
time, the project follows the GitFlow process (Driessen 2010). All developer submissions
are managed through pull requests and we have gratefully received patches from numerous
sources outside the core development team.

A.2. Continuous integration

Stan uses continuous integration, meaning that the entire program and set of tests are run
automatically as code is pushed to the Git repository. Each pull request is tested for compat-
ibility with the development branch, and the development branch itself is tested for stability.
Stan uses Jenkins (Smart 2011), an open-source continuous integration server.

A.3. Testing framework

Stan includes extensive unit tests for low-level C++ code. Unit tests are implemented using
the open-source googletest framework (Google 2016). These unit tests evaluate every function
for accuracy of values and derivatives, as well as error checking. This requires an extensive
meta-testing framework for the probability distributions due to their high degree of config-
urability as to argument types. The testing portion of the make file also runs tests of all of
the built-in models, including almost all of the BUGS example models. Models are tested for
both convergence and posterior mean estimation to within MCMC standard error.

A.4. Builds

The build process for Stan is highly automated through a cross-platform series of make files.
The top-level make file builds the Stan-to-C++ translator command bin/stanc and posterior
analysis command bin/print. It also builds the library archive bin/libstan.a. Great care
was taken to avoid complicated platform-dependent configuration requirements that place a
high burden on user system knowledge for installation. All that is needed is a relatively recent
C++ compiler and version of make.
As exemplified in the introduction, the make file is automated enough to build an executable
form of a Stan model in a single command. All libraries and other executables will be built
as a side effect.
The top-level make file also supplies targets to build all of the documentation C++ API
documentation is generated using the doxygen package (Van Heesch 2016). The Stan manual
(Stan Development Team 2016) is typeset using the LATEX package (Mittelbach, Goossens,
Braams, Carlisle, and Rowley 2004).
The make file also has targets for all of the unit and functional testing, for building the
source-level distribution, and for cleaning any temporary files that it creates.
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B. Library dependencies
Stan’s programming language translates to C++ code that depends on the following three
external libraries.

B.1. Boost

Stan depends on several of the Boost C++ libraries (Schäling 2011). Stan makes extensive
use of Boost’s template metaprogramming facilities including the Enable if package, the Type
Traits library, and the Lexical Cast library. The Stan language is parsed using Boost’s Spirit
parser, which itself depends on the binding libraries Phoenix, Bind, and Lambda, the variant
type library Variant, and the container library Fusion. Exceptions are largely handled and
configured through the error checking facilities in the Math and Exception packages. Output
formatting and ad-hoc input parsing for various formats is facilitated with the Format library.
Stan relies heavily on the special functions defined in the Math subpackages Special Functions
and Statistical Distributions. Random number generation is carried out using the Random
package. Ordinary differential equation solving for non-stiff systems is performed using the
odeint package. The posterior analysis framework and some built-in functions depend on the
Accumulators package.

B.2. Eigen

Stan’s handling of matrices and linear algebra is implemented through the Eigen C++ tem-
plate library (Guennebaud, Jacob et al. 2010). Eigen uses template metaprogramming to
achieve state-of-the-art performance for matrix and linear algebra operations with a great deal
of flexibility with respect to input types. Unfortunately, many of the expression templates
that Eigen uses for efficient static analysis and lazy evaluation are short-circuited because of
Stan’s need to have mixed type operations (i.e., multiplying a constant predictor matrix of
double values by a parameter vector of algorithmic differentiation values). To make up for
this in some important cases, Stan has provided compound functions such as the quadratic
form, which allow speedups of both the matrix operations and their derivatives compared to
a direct implementation using Stan’s built-in operators.

B.3. Sundials

Stan uses the SUNDIALS suite of nonlinear differential equation solvers for solving stiff differ-
ential equations (Hindmarsh, Brown, Grant, Lee, Serban, Shumaker, and Woodward 2005).
The subpackage CVODES implements the backward differentiation formula (BDF) algorithm
with sensitivities (Cohen and Hindmarsh 1996).
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